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ABSTRACT 

A reggeon calculus for the production amplitude is derived by 

using Gribov’s method of analyzing hybrid Feynman diagrams. We find 

that, for any reggeon diagram, the production amplitude can be written 

in the representation discussed in part I of this study, and each term can 

be evaluated according to rules which are a rather straightforward 

extension of Gribov9s reggeon calculus and have the same character of’ 

a nonrelativistic field theory. We briefly show how the concept of reggeon 

field theory can be applied to production amplitudes. 
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I. INTRODUCTION 

In the first part of our study1 (henceforth referred to as I) we 

derived and discussed in some detail a representation of the 2+n production 

amplitude in the multiregge limit. In this representation, the amplitude 

is written as a sum of terms each of which corresponds to a certain set 

of simultaneous singularities. Signature factors are shown explicitly, and 

the remaining coefficient functions are real. For the 2-3 amplitude (Fig. 1): 

T 2+3 = sqg(t,) 
5 “2-9 

‘bc 5 E 
5 a2Ql 

vL(T)+s 
@2 Y2 

Sab 5, 5 
2 ala2 

VRO 1 (1.1) 

where gb) and vR L (CU CJ t t q) are real (analytic) functions for the reggeon- 
3 1 2 1 2 

two particle vertex and two-reggeon particle vertex, respectively. 

This discussion had been based entirely on amplitudes with pure 

Regge pole exchange. In this second part we want to extend our consideration 

to amplitudes which contain Regge cuts as well, and it will turn out that 

the representation (1.1) is just the right one to be used. When we write it 

as a double Sommerfeld-Watson transform: 

T2,3 = (- &)‘[dj1dj2 ~~~s~-j’:,i2j~FL~j~j2t~t2~) + 

. . . 
sJ2sJ1 -J2 

ab k c. . 
J2 JiJ2 

FR(jij2tit2ri) 1 (1.2) 

with appropriate functions F 
L,R’ then we will find that this form holds 

for any 2+3 amplitude, including those with Regge cut contributions, and all 
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information about the j-plane structure is contained in the coefficient 

functions FL R , whichare free from phase factors. 
I 

In examining the effect of Regge cuts in the production amplitude, 

we follow the pattern of Gribov*s 
2 

work on the 2-2 amplitude, i. e. , we 

shall study hybrid Feynman diagrams and use Sudakov techniques. As the 

result, we shall find that a reggeon calculus can be formulated which is a 

rather straightforward extension of Gribov9s rules and has the same 

structure of a nonrelativistic field theory. Using the representation 

(1. 2)) this reggeon calculus provides us with rules for the calculation 

of Regge cut contributions to the coefficient functions F 
L 

and F 
R’ 

One 

particularly interesting aspect of this is that it will be possible to apply 

the concept of reggeon field theory3 to production processes. 

In course of deriving our reggeon calculus, we first shall examine 

hybrid Feynman diagrams of the 2-3 amplitude. Then we extend our 

considerations to the 2-4 process, and from this we derive our general 

rules m In order to make the reading of the paper as convenient as possible, 

we shall present all our results in the final section, while calculations 

will be done in Sections II, III, and an appendix. The final section will 

also contain a brief derivation of the reggeon field theory which recently 

has been used by Migdal et al. 
4 

During our calculations in Sections II, 

III we frequently refer to Gribovgs paper as well as to two papers of 

Drummond5 and Campbell’ who studied some hybrid Feynman diagrams 

for the production amplitude. 
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II. REGGEON DIAGRAM TECHNIQUE FOR THE 2-+3 AMPLITUDE 

The simplest diagram that contributes to the double Regge behavior 

of the 2-+3 process is shown in Fig. 1. The momentum transfer vectors 

are related to the incoming momenta and the energies s 
ab’ ‘bc ’ ’ 

through: 

2 
Sbc-m 

91 = 2s (P1+P2) + 
‘bc 

-m2-2qi 

2(s-4m2) 
(PI-P,) + 911 

2 
S 

ab -m S 

(PI+P2) + ab 

-m2-2q; 

92=- 2s 
2(s-4m2) 

(PI-P,) + q21 (2.1) 

with qll and q21 have only components perpendicular to the incoming 

momenta p1 and p . 
2 

In the double Regge limit: 

s, s ab’ ‘bc +O” 
S abSbc 

ti,t2, rl= s fixed 

it follows from (2. 1) that 

2 2 
-t qll 1’ q21 + t2 

and 
S 

abSbc 
=m 

S 

(2. 2) 

(2.3) 

(2.4) 

Assuming for the moment that the two blobs in Fig. 1 have Regge pole 

behavior with factorizing residue functions, we have for the asymptotic 

behavior of Fig. 1 the expression (1. 1) which we now write as: 



FERMILAB-Pub-74/95-THY 

T 

gtt,k(t,) 

5 a2 

i 

-3 -cY 
= 

2-3 Sab Sbc 

rl vss +r7 
= 5 a2Ql 

2vEE 
R “2 @ia2 

(2. 5) 

(2. 5) can also be represented as a double Mellin transform: 

2 
T 

1 
2+3 = -4i ( )I t. c. . FL(jlj2tlt2q) 

Ji J2Jl 

+ rl J2& 5 F (j j t t q) 
~~ j,J, R 1 2 1 2 

where 

(2.6) 

2 
F L , R(jij2tit2d = g(tlMt2)Gj (t )V 1 1 L,R 1212 (j j t t Wj2(t2) (2. 7) 

(2.8) 

Obviously, (2.6) is the same as (1. 2). For simplicity in our following 

calculations we shall use (2. 6) rather than (1. 2), and one of our results 

will be that this form is unaffected by the presence of any cuts. All 

effects of cut contributions will be contained in F 
L and F 

R’ 

As the next step we consider the diagram in Fig. 2. A detailed 

analysis has been given in Ref. 5 and we quote only the result7: 

ii-i 2 
-- 

4 

The N’s stand for the Mandelstam crosses at both sides of Fig. 2 and 
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and describe the coupling of two reggeons to two particles. They are 

identical to the functions which appear in the 2-2 amplitude (Fig. 3). The 

energy factors in (2. 9) can be rewritten as 

-1 12+P3-1 -(a 3-u 

‘bc ‘7 . (2.10) 

We further combine the signature factor $ with those in the bracket. 
3 

Using the identity 
-ir(P +L 

1 3-j) e 
55 = 

+71T3 . 

5 l3 sin IT(~~+L 3-U lyP *P3 

1 
‘*+f 3 

cos 
2 

f li+e3+1- 2 ) 

5.t 5 1 I3 

(2.11) 

which is derived in Gribovfs original work we obtain for the energy factors 

and 5, times the brackets in (2. 9): 
3 

a,i-e3-1 P 2+1 3-1 -(P1f13-1) 

‘ab ‘bc rl 51 +.t 5 1 3 I +P 2 3 -1 

(2.12) 

When we insert this into (2. 9) and write it as a double Mellin transform 

like (2.6), then j, becomes equal to 11+13-1 and j = J2+13-1 . Since 
2 

6 B I depends only on the difference 1 2-1 1 which is now j -j 
2 1’ we obtain 

2 1 
for the Mellin transform: 
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2 . 1 i )I Jl J2 
-4i djidj2sab ‘bc 5Ji'j2j, FL+ ' J2 5j25jlj2FR 

1 
(2.13) 

with F 
L,R = 

dPidP2d13 

(2ri) 
3 6 5+t3 -1-j,)6(J!2+13-l-j2) 

‘NkT 1 N 1 3 PZljG11((q1-k):)G12((q2-k);)G1 

(2.14) 

and Y p 
II 2 l3 

= yLle 3 for FL and = yL I for FR . The reader realizes 
2 3 

2 a 
that (2.13) is indeed identical to (2. 6) and only FL and FR have changed. 

Comparing (2.14) with the reggeon diagram (Fig. 2 or Fig. 4) one further 

recognizes the field theoretical structure which is very similar to the 

2-2 case: for each reggeon line a propagator G , conservation of the 

two-dimensional momentum at each of the three vertices N1 I , Ng I , 

J 
13 23 

and V. Further we have a loop integration d2kldL a What is new, 

however, is the role of angular momentum. To the left-hand side of the 

produced particle, the sum of (angular momentum -1) is j -1 and on the 
1 

right-hand side j, -1 which are the exponents of sab and sbc, respectively. 

In the language of field theory, the reggeon “energy” j,-1 enters the 

diagram from the left-hand side, and the energy j,-1 is leaving at the 
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right -hand side. At the vertex of the produced particle we have a loss 

of energy (j,-1) - (j,-1) = j2-jl O 

At this point we want to say a few words about the y-factors appearing 

in (2.14). In the analysis of the Mandelstam graph (Fig. 3),Gribov pointed 

Out that y%Jp 2 
produces a zero when j = I 1 + 1 2-1 is a physical angular 

momentum. Consequently, the two-reggeon cut contained in Fig. 3 does not 

contribute to physical partial wave in the t-channel. In our case (2.14)’ the 

~9s play exactly the same role: F 
L’ 

being the coefficient of 5. , must vanish 
Jl 

at physical values of j 1 ’ because our diagram contains a two-reggeon cut in 

j, and does not contribute to physic;al .partial wave& This vanishing is ensured 

by VI p - For FR, the decoupling is provided by y1 B . 
13 2 3 

So far we have assumed that the blobs in Figs. 1 and 2 are simple 

Regge poles (therefore diagram Fig. 4). But from the way in which the 

asymptotic behavior of such hybrid Feynman diagrams is derived it is 

clear that the blobs can also be more complicated subamplitudes which 

contain cuts, e. g. , Fig. 5a. If the blobs in Fig. 5 are poles, we obtain 

the reggeon diagram Fig. 5b. The asymptotic behavior of this diagram 

is again (2.13)’ but in (2.14) N1 L and Np p have to be replaced by 
13 2 3 

two-particle-three-reggeon coupling functions and the reggeon propagators 

Gk? 
and G by more complicated Green’s functions (Fig. 5~)’ e. g. 

1 I3 

(2.15) 
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The rules for the calculation of those “self energy” corrections are the 

same as in the analysis of 2-2 scattering. 

Next we analyze diagrams of the form Fig. 6 where the left-hand 

side may be any 2-2 amplitude which can be calculated by use of the 

familiar rules, and the right-hand side any 243 amplitude which we have 

considered so far. For illustration, we take the simple diagram of Fig. 7 

with Regge poles for the blobs, but our considerations will also be valid 

for more complicated amplitudes. In Fig. 7, the subamplitudes have the 

representations: 

F -1 2 

rhs =4i ( )I djldj2 (k-q21 
3, 

Ev E. . FL 
J1 J2Jl 

+ ~-J2’1251ijz FR (2.17) 

with F, R taken from (2.14). The study of the link between the two 
-, 

amplitudes follows the pattern of Gribovls analysis in the 2-2 case: one 

uses Sudakov variables: k = cup 2 + @pi + kl (cf. (A. 1) ), and from the 

requirement that the external masses of F I hs 
and F 

rhs 
are to be finite 

when all energies are large we obtain: 

k2 = sap + ki- m2 2 
m ;>- I(Yjs-- (2.18) 

(qi-k) 2 = 
2; 

, kl &m2 

-s bca + sap + (q+; % m 
‘bc 

/ 
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Thus the cy, p integrations are restricted to 

m2 - << S I I CY (2.20) 

But when p % 1, (2.18) requires SC+ * m2 m and CY%- whereas (2.19) 
n s ’ L 

demands cys >> m2 D Similarly, CY * -%- 
m2 

‘bc 
implies p - s 

ab 
and (k-q2) 2 is 

no longer large e Therefore, (2.20) is replaced by 

2 2 
m2 +q,l <<m’r 

‘bc ab 
<< 1 p 1 << 1 (2.21) 

and, as a consequence of this, we are allowed to approximate (q,-k)’ in 

(2.18): 

2 
hi-W2 - sap + (ql-Wl . (2. 22) 

L 

So the link becomes: 

I d4kF - 
1 1 

Ihs 2 k -m2 (q1-k)2-m2 
F 

rhs 

= (- $7 id1 dj, s kndp(-ns)‘$ (@sab)j’ 

1 1 . 
s,P+k’ -m2 

2 2”’ 
(2. 23) 

1 sag+Wql) l -m 

where we have written down only those terms which show the dependence 
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on (Y and p . For the Q-integration there are poles from the two 

propagators (and the external masses of Frhs, Fp hs), lying exclusively 

on one side of the real a-axis, as well as from the energy cut of F 
I hs’ 

one in the upper and one in the lower half plane. Since one half plane 

is always free from the propagator poles (for p > 0 it is the upper, for 

p < 0 the lower half plane), we can close the a-integration contour 

around the energy cut in this half plane and obtain the integral of the 

energy discontinuity. Furthermore, that the two contributions due to 

p > 0 and p < 0 just cancel each other if Fphs is opposite to the sab 

signature in F rhs ’ 
but add if they are equal. Thus (2.23) becomes 

- d2kl J 1 1 
2 

sap+k -m2 1 s@+(k-ql): -m2 
(2. 24) 

where the signature factor 5, has disappeared, because we have taken 

the energy discontinuity of Fp hs . Since all terms in (2. 24) to the right 

of the energy factors depend only on s~lp but not cy or p separately, 

we introduce x = -SC@ as a new variable and do the p-integration: 

W-d (p’,) 

ab 

43 P 
j,-1 -1 

(2. 25) 



-12- FERMILAB-Pub-741 95-THY 

The most singular part will come from j,% P , where (2. 25) becomes: 

sJi y 
ab ab 

* -1 
J1 

. . . 

Finally, we take the Mellin transform in sab of the whole expression and 

do the B and j, integrations: 

i -- 1 )J 2 
4i 

g(t,) . 
-x+k2 2 

1 
-m 

d2kl . 
‘2 - is J dx xJ 

g(t,) 1 

(W2 -x+k -m2 
2 

-x+(k-q)t-m2 
(2. 27) 

1 

It differs from (2.13) in that FL(FR) there are replaced by 

FL,R - g(t )G.(t )r.F 
1 J 1 J L,R 

Jwhere 7 stands for the curved brackets in (2.27). This corresponds to Fig. 7c, 

and the rules for this replacement are the same as in the 2+2 case. 

Clearly, (2. 27) is again of the form (2.6) with modified FL R 
, * 

Let us stop here for a moment and see what we learn from these 

considerations. What we have demonstrated is that internal reggeon- 

reggeon-reggeon vertices in the 2+3 amplitude obey the same rules as 

in the 2+2 case. In particular, this means that momentum and reggeon 
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energy (= angular momentum - 1) are conserved. Combining this with 

what we hsve said aftec (2.14). we obtain the rules for a. reggeon field 

theory whtch La, apart from the new vertex V and the fact that we have now 

two different reggeon energies j, - 1, J, - 1, the same as in the 2 -e 2 

Before we are justified to state this as our result for the 2-3 

amplitude ft 1s necessary to consider a somewhat Larger class of reggeon 

diagrams, To this end we lool( at the hyper Feynman diagrams of Fig. 8 

and the corkespondfng reggeon diagrams in Fig, 9. Their analyals is 

@her lengthy and described in the appendix. Again the amplitudes are 

of the .iorm (2.6). and Fb are calculated with our field theoretic # 
R 

rules sspted &bove. Thusour result is completely confirmed, and we 

summarlzk ‘4jur rules 98 follows: 

(+I write the 2*3‘am&tude in the form (2.6). For the computatton of 

FL, #,j;tit$ use the rules: 

{b) t&b ,r+ggeon line has the same direction (say to the right) and carries 

ensrgy’i 4 ad momentum Ed l It corresponds to the propagator GL (kf)= 

l/(1 -o($#~ aid the t 4nt8gratton. whose contour runs to the right of ths 

propagatei pole, tq to be closed to the left around the pole. 

(C) Any fttt8t3Wl~ tl*r8gg8tNt - m-reggeon vertex (Ftg. iOa) ik denoted by 
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(d) For the two particle -n-reggeon vertex (Fig. 10b) a factor N, 
. . , f n 

and conservation of energy and momentum: at the left vertex 

g= jditi, j,-i = ,;(l i-i), And at the right one c7=,;ci, jz-i = s,tti-f) . 

conservation ‘;; -lQcq; -G2’ , Li-f 2=(j,-j21 for the one-particle 

two reggeon vertex (Fig. iOc); 
+ 

I 

2 
(f) for each closed loop an integration d 

(2nj3i 
. Any diagram is then 

of the form Fig. tl: j,-i, Gd are totat energy and momentum on the 

left side, 12-1, c2 those on the right side of the produced particle , and 

j,-j,, ;i *-c2 is leaving along the produced particle. 

(g) Finally, each vertex with more than dne outgoing reggeon is accompanied 

by a factor yL 
1 %I 

which In analogy to (2. ii) is defined by . . 

tl . . gl = (Uni: 5 I..Inl,+..f,-(n-4) l 
(2*28), 

1 n 

fn addition to that, there is ? factor t = 
‘1 j2fl-4 

‘4 ji+i-f 
for the l-loop $J.FL and 

yl,j2+~-t 
in I*‘. 

‘t jjli-l Ii’ 

‘This last rule needs a comment. t3y combining y-factors in the 

diagram in an appropriate way and by using identities like 

Yt ie gf p e 
2 3 

= Yl 2f *+r fi Yl t 
i 3 

(2.291 

one r:an always c:unccl the l/y 1 j,+l-t ’ So Lhcrc is no pole drz to a zero 

of integer j, . ‘rho numcratorti yf jj+l-l ant1 y 
‘Pf 

, however, arc’ 
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necessary if the diagram is to decouple from the physical angular 

momentum states of j ’ 
1’ Jz’ respectively. On the other hand, in practical 

calculations the vertices are approximated by constants and the ygs by 

its value at 1 = 1. i Then the ratio in (g) reduces to 1 and we have just a 

a = i for each vertex 5*1 I and N 
1 1 of the diagram, but not 

i’ 2’ 3 1 2 
for the vertex of the produced particle. 

The next step in enlarging the class of considered diagrams includes 

those of Figs. 12,13. They contain a new vertex which has not been 

studied as yet: the particle-three-reggeon vertex. A detailed analysis of 

this vertex within the framework of Gribovas Sudakov technique,together 

with a brief study of diagrams that contain this vertex,will be given 

elsewhere. 
8 

Here we only mention that there are two different types. 

An example of the first type is given in Fig. 14a. The resulting amplitude 

has again the form (2. 6), i. e. , two terms each of which corresponds to a 

set of simultaneous discontinuities (Fig. 4 of Ref. I). The other type 

(Fig. 14b), however, contributes only to one of these sets. In other 

words, Fig. 14b has no simultaneous singularities in s and sab and 

leads to the amplitude 

. 

T djl J1 J2 dj2sab ‘be u -Jl 
5. c. . F 

L 
(j t 

Jl J2Jl 1 
j 
2 1 

t 
2 

n) 2 
FL = g(ti)Gj 0,) J I s2 

dl Idl 2 

1 (2r) (2+) 
6 (1 1+P 2-l-j2) 

“WLGl (q2-$ Gl (+Nl I 
1 2 1 2 

(2.30) 

(2.31) 
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where W 
L 

stands for the Mandelstam cross at the produced particle. 

Note that there is no contribution to F 
R 

from this diagram. The fact 

that there exist these two types of a particle-three-reggeon vertex is in 

agreement with what is expected from the partial wave analysis in the 

crossed channel. 9 Apart from this the particle-three reggeon vertex 

fits into our reggeon diagram technique: amplitudes containing such a 

vertex are still of the form (2.6), and in the reggeon field theory we have 

a new vertex where momentum is conserved and the produced particle 

carries away the reggeon energy j,-j2 which is the difference of the 

reggeon energy on the left-hand side and the total reggeon energy on the 

right-hand side of the produced particle (Fig. 15). For particle-four-reggeon 

and higher vertices we expect a generalization of these features: there 

will be several types of vertex functions and some of them will contribute 

only to one set of simultaneous singularities. However, we strongly expect 

that they will fit into our rules. 

III . THE 2-4 AMPLITUDE 

In this section we shall consider some diagrams for the 2+4 amplitude. 

From the results it will then be clear how to generalize the reggeon diagram 

technique to the general 2-n case. First we say a few words about the 

variables (Fig. 16). The momentum transfer vectors are: 
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2 2 
Sbcd-m ‘bed 

-m2-2ql 

q1 = 2s (P1+P2) + 
2(s-4m2) 

(PI-P,) + qil (3.1) 

S -S 
cd ab 

S +S 

q2= 2s (P1+P2) + cd 
ab-2m2-2qi 

2(s-4m2) 
(P,-P,) + q21 (3. 2) 

2 
m -S 

abc (p1+p2) + 
S 

q3 = 
abc 

-m2-2q: 

2s 
2(s-4m2) 

(P,-P,) + q3L (3.3) 

The multiregge limit for this process is defined as: 

S, S 
abc’ ‘bed’ ‘ab’ ‘bc’ ‘cd + O” 

‘bed ‘ab ‘bc ----- I 
S ’ s 

abc ’ s 
‘bc ‘cd ~ o 

abc ’ s bed ’ s bed 
7 7 3 

“1 = 9; 3 t2 = 4; , t, = s’;’ fixed . 
J 2 

have a rvariable: For each produced particle we 

S abSbc ‘bcScd 
nb = sabc ’ qc = 

‘bed 

which in the multiregge limit become 

2 
nb 

=m - (qi-q2)t , rlc = m2 - (s,-a.J; 

There we have also the identities: 

S 
abcSbcd 

S 
abcScd 

S 
abSbcd 

S 
= Sbc I 

S 
=Tjct s =vb l 

(3.4) 

(3. 5) 

(3.6) 

(3.7) 

2 2 2 
ti = clll 9 t2 = cl21 J t3 = 931 * 
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As the simplest diagram for this process we consider Fig. 16a 

which reduces to Fig. 16b when the blobs are Regge poles. Its asymptotic 

behavior is (3.4) of I with VL, VR being the same functions as in the 

2-3 amplitude of Fig. 1 (2. 5). For our following discussions we prefer 

to use a slightly different form. Using the Y-J variables (3. 5) and (3. 7), we 

express all energies in terms of s 
ab’ ‘bc’ ‘cd’ ‘)b’ and n . 

C 
Then (3.4) 

of I becomes: 

T ’ r)b q, v,(~b)v~(~c) 

‘ff -(Y 
+ c 6 c 

Q2 ?la2 “3Q2 
x 2q 2v,(fl,)vL(~c) 

C 

-cY 
+ c c 5 

cu3 a2a3 “f2 
“;@‘qc 3vRb-,b)vR(~c) 

It can also be written as a triple Mellin transform: 

F (j j j t t t r~ TJ )= LL 123123bc 1 Jo 1 L b j, 2 L c j3 3 
)G. (t )V (r )G (t )V (r) )G. (t )g(t,) (3.10) 

and a similar representation for the other four terms in (3.8) with functions 

F F F 
RL’ RR’ LR 

analogous to (3.10). We shall now demonstrate that this 

form remains valid when cuts are included and that the rules for the cut 

contributions to the F’s are a direct generalization of the 2+3 case. 
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To this end we first consider the diagram of Fig. 17. Its 

asymptotic behavior has been analyzed in Ref. 6 and we use the result 10. . 

l..d14 d2k 

(2G) 
4 I N1 I N 

(W2 1 4 l3l4 
GL 

I 
$ 1cf 2p 1cf 3f 2 

-I l -I 
2 

“b nc vLhb)vL(‘l)c) + * 0 0 
I 

where we did not write down the other four terms of (3.8). 

We reexpress s through sab,sbc, scd, qb, vc (3.5), (3. 7) : 

S abSbcScd 
S= 

nb% 

(3.11) 

(3.12) 

and write the energy factors in (3.11): 

f l+f 4-1 I 2+1 4-1 1 3+L 4-l -(I 4-1) -ia 4-1) 

S ab ‘bc S cd nb % 
a (3.13) 

Next we combine the signature factor $ with $ , using (2. li): 
4 I 

For the other four terms, we put together $, 
4 

with 4 , $ , Em , and 
23 1 

5 ’ respectively. 
3 

In this way, we obtain for energy factors, signature 

and the first term in brackets in (3.11): 

P1+P4-1 I 2+P4-1 1 +f -1 
S ab ‘bc s3 4 

-(P1+14-l) -(-e 2+f4-1) 

cd c I+P ii 5 l 4-1 f 2P4 -P3P2nb % 

’ %! 1’ 4vLvL l 
(3.14) 
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Finally, we write (3. 11) as a triple Mellin transformation: 

(3.15) 

with 

‘Gf 1((ql-kt)Gf2 ( ‘q2-k’f)Gp 3(‘q3-k):)Gp (k:)N, lp 4N1 31 21 1 
4 1 4 

vLb-$,)vL(t7c) . (3.16) 

Quite analogous expressions hold for the other four terms in (3.15). Again 

note the factors yp p which decouples our diagram from the physical 
1 4 

partial wave in the j, -channel. 

This consideration already indicates how to generalize the rules 

from the 2+3 amplitude to the 2-4 case. We now have three angular 

momenta j,, j,, and j 3’ and j 1-lJ j,-1, j, -1 are just the sums of the energieE 

of the reggeons cut by cutting the diagram in Fig. 17 vertically to the 

left of particle b , between b and c , and to the right of particle C, 

respectively. Equivalently, the reggeon energy j,-i enters the 

diagram from the left hand side, j 3 -1 leaves on the right end, and 

particles b and c carry away jl-j2, j,-j,, respectively. With this 

prescription, we again have our familiar reggeon field theory. 

We want to demonstrate the validity of these rules still in a few 

other reggeon diagrams. Taking that of Fig. 18 we again quote the 
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result of Ref. 6 where the diagram has been analyzed : 

i(;fJd’;;;j:4 J2 Nlll ~~2~,~~~k~~G~~~.3~~2-k~~~ 

-I 
+rl b 4v (q )g 6 R b I 4 P3P4 1 l 

(3.17) 

The energy factors are transformed into: 

f +1 -1 f +I 
s1 3 

1 4-1 I +I -1 -(a 4-1) -(f 

‘bc s2 4 
1-l) 

ab cd % ‘b (3.18) 

and for the phase factors we combine: 

5! 5 5 I 5 P = % I 5 +I -I$ P $ 1 
13 2143 131 3 21 43 

59 5 5 P 5 I = iyf 1 cl +I 
142134 14 1 4- 

I$ P $J 1 
21 34 

(3.19) 

For the combination of the remaining pair we need another identity: 

(3.20) 
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which can be checked by simple algebra. Here we have set j2 = P 2f1 3-1, 

j,= I 1+P 4-1, j, = P 2+f 4-1 , Finally we take the Mellin transform of 

(3.17): 

F 5. 6. . 5. 
LL J1 J2Jl J3J2 

+r7 ~J2~,32F 
di2 jlj2 j,j, 

~ f; + ~~J2~~3’RRSljSJ2j3~jlj2 

‘3 
+rl bJ1ny FLRkjl*j3jl ‘j2j3 + 5. 5. . 6. . )I J3 JlJ3 JZJI 

(3.21) 

which is again of the form (3. 8). In the relation (3. 20) one recognizes on 

the right-hand side the factors cos 5 
T?L\ / \ 

nd 
IT/ 

cos z\1 2+1 4+1 

14 .-A: 
2 I they guarantee (cf. (2.11)) the decoupling of our diagram from 

the partial wave amplitude at integers j, and j, , respectively. 2. 

Our last example is the diagram in Fig. 19. For the subamplitudes 

on the right and the left hand side we use (2.13): 

+E. E 
3, 

J3 1 3j3f7c FRhc) 1 (3. 22) 

The link between Fp hs and F 
rhs is analyzed in the same way as we did 

in the previous section for Fig. 7: 
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1 
3 

(3.23) 

d2kl . . 
1 1 ,- J Jl J3 

(2~)~ sop+kt -m2 sa@+(k-q2)t -m2 J dj2dj3 SabScd 
. -I 

5, E 5 E -‘Iv 3FLhb)FL(n,) J1 1 2jl 1 3 j2i 3’b c 

-* 6 f 2Sj,.e 2’f 3Sj3f 3’bll ‘~~’ 3FR(~b)FL(~c) 
-f +5 e. 5. E 2 -j3 

I2 JlL2 J3 f 3j3qb ‘C 
FRhb)FR(qc) 

+5. 
Jf 

5 
B 2jl 

E. 
33 

-$ 
i 333 

n;J1ii;J3FLhb)FR(ucIc) 1 (3. 24) 

As to the CY and p-integration, we close the contour of one of them around the 
I 

energy cuts which are due to (-0s 
bed) 

2 
f 

and (Ps abc ) 
3 

, and obtain an 

integral of the discontinuity across the cut. To illustrate this for the 

first term in (3. 24)’ we write the n’s , energy, and signature factor as: 

Jl 
I . -I 

(-SC?) (-as bed) 

1 2-jl 

‘j ‘f j (ps) 3(scd) 
33 

1 21 
(3. 25) 

and see that p appears only in the total energy of Frhs (Fig. 20 ). The 

discontinuity across its cut is just 

disc 
P3 j,-1, 

(‘Cd) = -(p/- 3scd,3 
j-f, 

L& 
J3l 3 

, (3. 26) 
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and by the same arguments as in the previous section we arrive at 
f- -m2/s cd I +m2/s ab dCY(-(YSbCd) d@ (Psabc) 

I3 

-m2/ Sbcd -m2/s 
J 

. 
Jl J3 

djldj3sabscd 

abc 

1 1 -4, -.f 3 

’ c. E c. 

J,lj Ja 2 nb % FL(t7b)FLolc) . 
2 1 3 sc$+k2 -m2 

1 
s++(k-q2):-m 

(3. 27) 

-1 
Changing cy and p to CY“ = n scda, p’ = nb’sabP leads to 

C 

-m’/rl, P 
i 

m2/ub 
da’(-c/sbc) 2 4.3 ‘(p +bc) 

j3 

-m2/s bc m2/ ‘bc 

!i d2k I 1 1 
.- 

w2 ‘b$P ’ +kqm 
2 

) +Wqs) - 
. . . ) (3. 28) 

‘bcQ ’ P 
L 
1 

and int reducing x = -s b/P p and doing 

(3.28) = 2 J dl 2cLe 3 

the p’ integration gives 

J dxx’... (3. 29) 

Finally, we take the Mellin transform with respect to sbc and do the 

f 
l3’ 2 

integrations by closing their contours to the rh side. The pole 

I/U 3 -1 2) makes (m2/qb) 
1 3-P 2 

and m 
2f 3-l 2 

in (3. 29) vanish, and 

we end up with: 
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,I 3 
. ( 1 

dj dj dj s Jl J2 J3 
-4i 1 2 3 abSbcScd 5j ~j j SJ j rlbJillcJ2 

121 32 

FL hb) 
I 1 

-x+k -m2 
2 2 

-x+(k-q2)1 -m 
2 ‘FLhc) . 

1 

(3.30) 

A similar argument holds for the second and third terms in (3. 24)) but 

for the fourth we have 

5,1',~~" 
j3 

. -I 
(P Sabc) 

J3 (3.31) 

Now p appears in both the total energy of Frhs and the subenergy, and 

when we move the p-contour around, we pick up the discontinuity across 

both energy cuts (Fig. 21): 

F rhs(ps+ie, Psabc+ie) - Frhs(Ps-ie, PsabcBiC) 

= disc PsFrhs(,% @sabc+id + d~S~psabcFrhs(PS-~~, Psabc) 

I2 ( ,I J3 j3 -I 3 = 
-4i dP3dj3(Ps) (PSabc) + 9 

l3 1 FRhc) . (3. 32) 

With this we reach the form (3. 27) and, by repeating the steps, finally 

at the analogue of (3 e 30). For the combination of our signature factors 

we use the identity: 

(. 5 + . 
3’2 

f 
J2 

,g 
Jf 

5. . = 5. 6. . 
5231 

E. . + 5. 5. . 
J, J3J1 J2J3 

E. . 
J3 J2J3 J2J1 

, (3.33) 
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and have: 

. . . 
J3 

s 
cd(Ej. ‘j j ‘j j ’ ~~ ~~ j 5 j ),,J1, 

-j3 

131 23 3 13 21 C 

d2kl j2 J J dxx FL hb) 
1 1 *- 

m2 
2 2 

-x+k -m 
FRhc) . 

1 -x+(k-q2)t -m2 

(3.34) 

This concludes our demonstration of the validity of our rules in more 

complicated diagrams. 

IV. SUMMARY AND DISCUSSION 

In the previous sections we examined hybrid Feynman diagrams 

which conta in Regge cut contributions to the 2+3 and 2-4 production 

amplitude. In performing this analysis, we followed the pattern of 

Gribovts work on the 2-2 amplitude, and the result of our study is that 

Gribovgs reggeon calculus can be extended to the production amplitude. 

We found mainly three new features which are not present in the 2+2 

case. The one is the decomposition of the amplitude into a sum of 

terms, each of which reflects a certain singularity structure. In part I 

we derived and discussed this representation for amplitudes which contain 

only Regge poles, but the calculations of the last two sections demonstrate 

that it remains valid when Regge cuts are included. If we take,for 

instance, the 2+3 process, than for any given reggeon diagram the 

amplitude can be written in the form (1. 2)’ and our rules then tell us 

how to compute FL and FR 0 
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The second new phenomenon is the existence of more than one 

momentum variable and angular momentum which in the reggeon calculus 

plays the role of energy. In terms of reggeon field theory, the 2+2 

amplitude is a 2-point function and depends only on one momentum and 

energy variable o In contrast to this, the functions FL R of the 2-3 
J 

amplitude are 3-point functions and depend on two reggeon energies and 

momenta. 

Finally, the diagrams for the 2+n production process contain a 

new vertex which couple the produced particle to reggeons. In the 

simplest case, it is a two-reggeon particle coupling, the analytic 

properties of which have been discussed by several authors, but, in 

general, the produced particle can also couple to three or more reggeons. 

In this paper, we have been concerned only with the two-reggeon particle 

coupling, but our rules will include the more general coupling function., 

A discussion of diagrams with a three-reggeon particle vertex which 

will be given elsewhere8shows that this higher order coupling indeed fits into 

our rules,and leads to the belief that the same is true for the general 

many reggeon particle coupling. 

All these results have been derived from a study of 2-+3 and 2+4 

reggeon diagrams. We expect, however, that our rules apply to the 

2+n amplitude. In fact, we have considered at least some types of 

2+n reggeon graphs and found that our rules are correct. We do not 

want to present these calculations here, but consider them as a 
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justification for the expectation that our rules are of general validity. 

After these remarks we want to list our rules. They are a direct 

extension of the rules for the 2&3 amplitudegiven at the end of Sec. III, and 

summarize the results of both previous sections. For the calculation 

of any reggeon diagram that contributes to the 2+n production amplitude 

one proceeds in the following way: 

(a) write the 2-n amplitude in the representation which we have described 

in I and write each term as a multiple Sommerfeld Watson transform. 

For illustration, a typical term of the 2+5 amplitude is (cf. (3.16) of I) : 

. . . . . . . 
J3 Jl-J3 J4-J3 J2-J1 

Sabc ‘de Sbc ci.LLE.. 
J3 JlJ3 J2Jl J4J3 

l F RRL(tlo ’ t4’jl” ‘j4; ubJ v,J fld) 

. . . . 

dj s 
Jl J2 J3 J4 3, 

4 
6 5. . 5. . 5. . D-J29-J3?l abSbcScdsde j, 31J3 ~~~~ 34J3 b c d 

l F RRL(‘7b’ UC’ nd) a (4.1) 

The n-2 subscripts of F correspond to the set of VR L functions to 
J 

which it would reduce for pure pole exchange (cf. (3.16) of I), and 

reflect the singularity structure of this term. 

For the calculation of the F-functions use the reggeon diagram 

technique : 
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(b) each reggeon line has the same direction, say to the right of the 

diagram, and carries energy I -1 and momentum c 
I’ It corresponds to 

the propagator Ge (kf) = l/(1 -u(kt)) , and the 1 -integration, whose 

contour lies to the right of the propagator pole, is to be closed to the left 

around the pole. 

(c) Any internal n-reggeon + m-reggeon vertex (Fig. IOa) has a factor 

rfl.An;f;.‘P;n 
and is associated with conservation of momentum and 

energy: -gr; =-g$ 23 (mi-l) = Ypf(-I) D 1 i 1 i’l 

(d) For the two-particle - n-reggeon vertex (Fig. lob) write a factor 

and use conservation: at the left end of the diagram c 
n 

,=d. , 
1 

j,-l=Z(fi-1) , at the right end c, 1= Z c.i, j n ,-l=c(sl-l) . 

(e) There is a factor VL (1 1P 2;kfL, k2f, q) or VR(P 1 12;kl:, k2f, q) for each 

one-particle - two reggeon vertex (Fig. 10~). As indicated, this factor in 

general depends on momentum and angular momentum of the two attached 

reggeons, as well as the Q that belongs to the produced particle. The 

subscript agrees with the correspondong subscript of F: for the left-most 

produced particle with the first subscript of F etc. In the notation of 

Fig. 22, the i-th produced particle has momentum qi-qi+l and carries 

reggeon energy ji-ji+*. Correspondingly, there is a conservation law: 

~l-~2=(~i-~i+1), 1 1-1 2=(ji-ji+,) for this vertex. For a particle-three 

reggeon vertex, (Fig. 15)’ there is another function W 
L,R 

together with 

‘;;-IT2-IC3=(~i-~i+1), (1 ,-I)-(1 2+1 3-i) = (j,-ji,,) . 
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(f) For each closed loop there is an integration 
d2k Idl 

(2n)3i ’ 
- -..~ 

Any diagram is then of the form Fig. 22: to the left of the left-most 

produced particle total energy and momentum are j,-1, cl , between 

this and the next-right particle j2-I, c2 and so forth. Figure 22 is 

easily recognized as a n-point function, with the external legs being 

the n-2 produced particles and the right and left end of the diagram. 

Because of energy and momentum conservation the amplitude depends 

only on n-l energies and momenta. 

(g) Finally, there are still y-factors in the diagram, coming from the 

combination of signature factors of the internal lines. Since the order 

in which these signature factors can be combined is not unique, there 

are different ways how to arrange the y-factors. We want to mention 

one of them. In this case, each vertex N1 
1 . a . I and r 

n 
e,-e PI.2 

m. n 1 
with n reggeons on its right hand side is accompanied by a factor 

Yf l...Pn ( 
defined in (2.28) . 

1 
In addition to that, each 1 -integration 

(see Fig. 22) has a factor 1 = 
‘P ji+l -f 

, 
‘1 j +1-f 

if the corresponding vertex 

i 

function has the label L, and a factor 
‘.4? ji+l+l-f 

‘l! j 
when the label is 

i 
+1-f 

R. The numerators of these factors produce a zero for physical values 

of ji and ji+l and thus ensure that diagrams with cuts decouple from 

physical angular momentum states. The denominators can always be 
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cancelled against other y-factors of the diagram, and their zeroes do 

not produce any poles. Therefore, the diagram has the correct 

decoupling properties at physical values of angular momentum. 

But the reason why we have chosen this way of arranging the y-factors 

is the following. In practical calculations where one is mainly interested 

in the region ji - I and ti * 0 , the vertices of the diagram are 

approximated by its value at zero reggeon momentum and energy, and 

the ygs by its value at L i = 1 . In the most interesting case, the so 

called “enhanced” diagrams, one has only triple couplings r Pi;1 I 
2 3 

between reggeons, and the value of yp I at I 
2 3 

i 
= 1 is -1. Since 

there are twice as many vertices rp .B p 
as % I 

in the 
1’ 2 3 2 3 

diagram, one has just a fl= i for each (real) r1 .I I 0 The 
1’ 2 3 

y-factors 
‘Qji +i-Q 

and 
‘P ji+l+l-Q 

, on the other hand, reduce to 
‘Q ji+i-Q ‘Q j 

i 
t-l-8 

1, and thus the effect of all y-factors together is to make the triple 

reggeon coupling purely imaginary. 

We would like to conclude with a few words about the practical 

use of our reggeon calculus in production processes. As we have 

mentioned in our introduction of I, the treatment of the pomeron as a simple 

pole leads to serious theoretical inconsistencies, and it is, therefore, 

unavoidable to include renormalization effects. In the argument which 

leads to the unpleasant pomeron decoupling theorems, the production 

amplitude plays a crucial role, This motivates a particular interest 
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in a study of the effect of Pomeron cut contributions in the production 

amplitude . For production processes that allow only pomreon exchange, 

such a study has been performed by Migdal, Polyakov, and Ter- 

Martirosyan. 
4 

We want to demonstrate how their field theory emerges 

as an approximation of our reggeon calculus. 

Conventionally, when formulating the reggeon calculus as a field 

theory, all vertices are approximated by their value at vanishing external 

momenta and energies. We have already said that in this approximation the 

vertex Np e and the triple reggeon vertex r I *I I which are 
12 1’ 2 3 

real functions acquire an additional factor i . This comes from the factors 

YQ P ’ which in our approximation become -1 a From our rule (g) it is 

clear that in any diagram there are just twice as many Ne I’ arxl 

52 ; .k!* Q” vertices as y 
P ,Q’ factors, and so there is just one fi = +i 

for each N1 I, and rp 
; 
I, , a”* With the approximation of the vertex 

functions VL and V 
R 

one has to be a little careful. When V 
R 

and 

vL 
are approximated by their values at zero reggeon energy and 

momentum, then formula (2.17) of I teaches us that 

v (a =Ly ) 
R1 2 

= vL(ai=a2) = v 

and there is no longer any distinction between F 

f F. With the further approximations r) 

.g..- 2 * 
5132 dj,-j,) - ’ ’ 

we then obtain for the Z--+3 amplitude near 

J1 - j2 * 1: 
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2 . . 
1 ( )J -j2 

-4i 5. 5. . FR 
J2 v2 1 12- . . 

-4 1 )J Jl J2 
-4i djldj2sab sbc (m2)-1(-2F) a 

(4.3) 

However, V 
R 

and V 
L 

contain, in general, also higher order terms: 

VR = VR(QI=‘Y2=1) + (cf -c! )V’ (a =cy 
I 2 R l 2=1) + .0. 

VL = vL(al=“2=1) + (Q2-“1)Vp*=a2=l) + . ~. (4.4) 

with VR=VL=V’ , and when this next leading term is included, (4.3) is 

modified to: . . 
(m2)-1(-2)(F +? F’) (4. 5) 

where F’ results from V’ and is, in general, of the same order as 

F. The important result of this is that in (4. 5) the coefficient of the 

energy factors is a complex function: whereas F 
L 

and F 
R 

are real 

analytic functions near j 1% j, * 1 and t2 * t2 % 0 , the amplitude is 

not pure real or imaginary. This is a consequence of the signature 

factors. 

Formula (4. 5) suggests to introduce a complex effective coupling 

constant 

u = 2(v+2i V’) 
Tr (4.6) 

for the particle-two reggeon vertex, and a factor -i for each subenergy 

S 
ab 

and s 
bc S 

It is then not difficult to see that this prescription gives 

the right structure for the 2*4 and higher amplitudes near ji* 1, tl % 0: 
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instead of being a sum of all the F 
RL. 

with their respective signature 
o o 

factors, the 2-n amplitude has now only one term: 

* F(jla. jn Ii tlo . tnDl) 

where F is a complex valued function and proportional to U 
n-l . This 

leads directly to the field theory of Migdal et al. 

However, some of the approximations which lead to (4.7) are no 

longer valid when the quantum numbers of the produced particles allow 

exchange of other Regge poles. In particular, VL=V 
R 

is not justified 

when two different Regge poles couple to the produced particle, and the 

amplitude remains a sum over several terms with their respective 

signature factors. The application of our rules to such processes looks 

rather promising and we hope that our study stimulates further work on 

these lines. 
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APPENDIX 

We first analyze the diagram of Fig. 23. The blobs contain simple 

Regge poles, and Fig. 23 is then equivalent to the two reggeon diagrams 

in Fig. 24. The analysis follows closely the pattern of Gribovfs original 

paper, and in our analysis we shall work out only those points which are 

different from GribovPs discussion. 

First we introduce Sudakov variables: 

H- m2 P- m’ -- -- 
p1 - PI s p2’ p2 - p2 s p1 (A. 1) 

ki = cp; + pip; + kil 

2 
‘bc q1 

41 =sp; -sPzp+qll 

2 
q2 

S 
ab -- q2=-sp; s p;+qzl o 

The analysis of the Mandelstam crosses at both sides of the diagram is 

the same as in the elastic case. It leads to the restrictions 

The momentum transfer along reggeon 5 is only finite if 

(A. 2) 

(A. 3) 

2 
m Q s--- 5 . 
‘be 

(A. 4) 
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As a result, we may neglect these parameters in the diagram, wherever 

they appear in a sum together with other parameters, which are of the 

order 1 . From the link between reggeon 5 and 6 we obtain: 

2 
m 

a9%; ) p,sg ’ 
ab 

(A-5) 

Now we consider the energy of reggeon 3: 

(k3+k4+k7+k812 - s b3+c4) (P 7+P8) + b7+Q @,+P,) I (A.61 

2 
where we have already neglected terms of the order * m o (A, 6) can only 

be large, if either 

case (a) cy3+cz4 >> Q 7 +cu 8 and P,+P, B p,+p, 

or case (b) Q7h.Y8 a cr 3 +cY 4 and P,+p, * p,+p, 0 

(A. 7a) 

(A. 7b) 

Since s a5P8 5 m2 and sa5P7 5 m2 from the link between reggeons 

1, 3, and 5, we obtain in case (a) 

Q5 << CY +a 3 4 

and in a similar way also 

(A. 8a) 

(A. 9a) 

In case (b): 

@5 
<< a +a 

7 8 
(A. 8b) 

P, * P,+P, ’ (A. 9b) 

From this we obtain the following decoupling scheme for the aiand pi - 

integrations (i=Z, 5, ): each of these variables appears in only one vertex 

(Fig. 25). The vertices are now connected only by the transverse 
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components of k 2jk5 ’ 

Case (a): 

Next we restrict ourselves to case (a) and,look at the reggeon 

energies : 

reggeon 1: W,)Q,S (A. 10a) 

reggeon 2: V3S (A. 10b) 

reggeon 3 : (‘Y3+a4) (p 7+P,)’ (A. 10~) 

reggeon 4: p4cy6s (A. 10d) 

reggeon 5: +8”9’ (A. 10e) 

reggeon 6: (I -“6)P9’ (A. 1Of) 

m2 
Since (A. 10a) is to be large, we need a7 >> -r;- , but a study of the 

2 
propagators in the vertex between reggeon 1, 3, and 5 leads to ~~ $ 5 . 

‘bc 
Thus: 

Equation (A. 10e) requires p, >> 

2 
m - << 

S 

m2 
a7 e Sbc - 

m2 -, but from 
S 

(A. 5) we have 

(A. 11) 

cYS$ s 
9 ab’ 

Therefore 

(A. 12) 

One further shows that the CY~- integration in the vertex 1-3-5 vanishes, 

ifnot jp7[>lp8j * Thus 

2 
m - << p 4 1 
S 

ab 
7 

(A. 13) 

All other ai and pi in (A. 10) are in the interval 



-38- FERMILAB-Pub-74/95-THY 

m2 - e (y 
S 

i’ pi << 1 . (A. 14) 

Using the conditions (A. 12), (A. 3), (A. 8b), (A. 9a), (A. 12), and (A. 13), 

we write down the propagators for the vertex between reggeon 1,3,5: 

2 2 
k7 = sa7P7 + k7,- 

k; = sa8P8 + kil 

(A. 15 a) 

(A. 15b) 

(q1+k7-k2J2 = sa7P7 + (~11-ka+k7)f (A. 15~) 

(ql-k5-k8)’ = s(a5+cr8)P8 + (qI-k5-k8); 

(k7+k8)’ = s(cr7 + @,HP7+P8) + (k7+k8( 

(A. 15d) 

(A. 15e) 

(k5+k7+k8-k2)’ = S(Q~+@~+@~)(P~+P~) + (k5+k7+k8-k2); . (A. 15f) 

The energy factors from (A. IO), which belong to this vertex, are 

P 
t-P,) 5 (A. 16) 

with B i being the angular momentum of the i-th reggeon. From (A. 15) 

it follows that for the CY 
8 ( - or cu5)-integration all singularities lie in the 

same half plane, and its integration yields zero, if not sgn p # sgn (3 

and 1 p,I > 1 (3,I . Assuming this, all poles of a7 coming fro: the 
8 

propagators (A. I5), lie in one half plane, and the cy -contour can be 
7 

closed around the energy cut of reggeon 1 in the opposite half plane. As 

a result of this, the absorptive part of the amplitude of reggeon 1 appears. 

One further shows that the contributions due to the regions p, > 0, p, < 0 

and p, > 0, p 7 < 0 cancel each other if the signature of reggeon 1 is 
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different from the product of those of reggeon 3 and 5. If they are 

equal, the contributions add up. Now we introduce the variables p,“-P,/P,, 

cY;=-p7Q5’cu; = -p7a8’ x = sa7p7 . Then the expressions in (A. 15) do no 

longer depend on p,: 

2 2 
k7 = x + k71 (A. 17a) 

2 2 
kg = SCY'SP'S + kg1 (A. 17b) 

(q1+k7-k2J2 = x + (q I -k2+k7( (A. 17~) 

(ql-k5-k8)’ = s(~;+m;‘p; + (ql-k5-k8); (A. 17d) 

(k7+k8J2 = x(1-p;) + sc$(G&) + (k7+k8)f (A. 17e) 

(k5+k7+k8-k2)’ = x(1-p;) + s( cz;f~$)(GPgC) + (k5+k7+k8-k2);e (A. 17f) 

and the p, integration can be done explicitly. We obtain for this vertex: 

con& s ‘- jd2k7d2k8jdu5 dD7”B7da8dP8Q; ‘(p7+@8: 3P; 5gggo k;;m2 

1 1 1 . 1 1 . 
(q1+k7-k2)2-m2 ki-m2 (k8+k5- q1)‘-m2 (k7+k8)‘-m2 (k5+k7+k8-k2)2-m2 

-Q 
= const. s 

1-l P 3+P 

dP7P7 5 

-Q i-2 2 
S J J d2k7d2k8 dx dcY;da’gdP; 

Q 
x kP8’) 

P Q 
3P; 5*!m~ propagators 

(A. 18) 
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where r Q *Q Q 
1’ 3 5 

is the same function for the three-reggeon coupling, as 

in Gribovls original paper, being independent of the energies. 

For the vertex between reggeon 2,3,4, the analysis proceeds in 

the same way, except for the fact, that s ab does not appear: 

m2 
- << m3 << 1 S (A. 19) 

(A. 20) 

2 
m 
- - p4e 1 S (A. 21) 

These conditions are the analog of (A. 11-13). The result of the analysis 

(dal, d4k3, d4k4 -integrations) is : 

-Q 
S 

Q 3+Q 
2 -Q 4-1 rQ 41P zL 3 

. (A. 22) 

Finally, we have to analyze the link between reggeon 5 and 6. This is 

done in Ref. 10 and we quote only the result: 

fa 5e 2 j6 ‘5 * const. 

J da9dP # Q(PSs) (94 gg 1 1 
5 6 kt-m2 (ql-k5-k9)‘-m2 

1 . 

(q2-k2-k9)2-m2 

(A. 23) 
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Now we are in the position to combine all energy facto rs: with the 

introduction of Sudakov variables: d 
4 

k. = i-l 
1 ; dy$yk 

9 addition to the reggeon energies, s ; but a factor s 
2 

il 
we obtain, in 

is necessary for 

each of the two NVs and the 9s to make them energy-independent,and 

a factor s for We are then left with 

-1 

-I -I1 
1 

‘S Q 3+Q 
5 

-Q 
1 

-1 

(A. 24) 

Expressing s through (2.2) in terms of n, sab, and sbc and taking 

the double Mellin transform with respect to sab and sbc , we obtain: 

1 
-Q 

4 1 1 1 
” Q 4-(Q 2+Q 3-1) ’ j,-(Q 4+Q6-1) j, -(Q 4+Q 5-i) jl+Q 3+Q -Q 

4 1 

-(Q 3+Q 2+l) 1 1 1 
-r j2-t’ z+’ 3+’ 6 -2) j,-(Q 2+Q 3+Q 1 5-2) j,-(Q l+Q 2-1) ' (A' 25) 

Making use of the fact that Reji > ReQ i and Rej2 > ReQ i , we can do 

some of the Q i -integration and convince ourselves, that (A. 25) is 

equivalent to: 

-(Q 4-U 
rl 4+Q 6-i) 

. 6 Q 4-(Q 2+Q 3-1) &Q 2+Q 3-i) 0 (A. 26) 

Finally, we have to take care of the signature factors. We observe that 

for reggeon I and 4 only the absorptive part of the subamplitude enters 

into the whole amplitude, and we are then left with 5, , gQ and the 
2 3 



-420 FERMILAB-Pub-74/95-THY 

signature factors in (A. 23). For the first part of the brackets in (A. 23), 

we use (2. II) and combine cQ 
3 

with fn to iy 5 
5 QQ Q 

and this with 
35 1 

EQ to: 
2 

EQ5QcQ6QQ =bQQiy c 

2 3 5 65 1 2 Q3Q 5 pi+Q 
5 2-1Q Q 

6 5 

c 5 = i ‘Q iQ 21yQ 3Q 5 j, j2j, (A. 27) 

In the second part of (A. 24) we arrange the signature factors in the 

following way: 

tQ 6Q fm CQ Q = i YQ Q i YQ 

2 3 6 56 3 5 

Instead of this, we could have combined in another way: 

CQ CQ {Q fQ Q = i YQ Q i YQ Q e. k . 

2 3 5 65 2 3 4 5 J1 J2J1 

EQ $ EQ EQ Q = i YQ Q i YQ Q k k . 

2 3 6 56 2 3 4 6 J2 JiJ2 

(A. 28) 

(A. 29) 

There we see explicitly the factors yQ Q and YQ Q which generate 
4 5 4 6 

zeros when j 1 and j2 take physical values. It is also clear from 

(A. 29) that there are no poles from zeros of y, as it might seem from 

(A e 28). The form (A. 27)) (A. 28), however, yields explicitly a y-factor 

for each vertex with two leaving reggeons (NQ Q and r Q *I Q in our 
I. 2 1’ 3 5 

case), and one can see fairly easily that this holds for any diagram. But 

in all considered diagrams we found it possible to arrange the signature 

factors similarly to (A. 29)) i. e. , without denominators of y-factors. 

Returning to (A. 27), (A. 28)) we combine them and obtain: 
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-f-e 4-l) 
rl EQ q-” 5v~ EQ $Q Q + ,” ‘vRgQ 

5 65 6 
cQ 

VL + umJ2 f. 5 . iyQ Q iyQ Q 
32 ji32 1 2 3 5 

lyQ Q 
4 6 

“Q Q 
5 6 

(A. 30) 

‘R ’ 

Thus our final result for our diagram Fig. 24a is of the form (2.6) with 

FL, R =Jd~~~i;~Q 6 J d~~~k5 (2ri)46(j,-(l l+Q 2-i)) 6( j,-(a 4+Q 6-iJ) 

Q i-(1 2+Q 3-1) NQ Q Y 

1 2 QlQ2NQ4Q6 

’ rQ pQ 3Q 5yQ Q rQ ;Q Q vL, R 
35 4 23 6 ;(qi -k5)lZ. (q2-k5)12, 

’ GQ ,( hi -kZ):)GQ 2(k;l)GQ jj(k2-k5):)OQ ,+G, ,i hi -k5)f) 

(A. 31) 

Case (b): 

The reggeon energies remain unchanged, except for reggeon 3: 

b7+Q8) 03 3+P4) s (A. 32) 

instead of (A. 10~). Equations (A. 11), (A. 12) are still valid, and the 

requirement that there must be poles lbr p, in both half planes demands 

:rugi’1”71 ’ On the other hand, we have sbc~8$m2 from the propagator 

(ql-kg-kg)‘-m2: 

(A. 33) 
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Now we proceed in the same way as in case (a): for the vertex 1-3-5, 

the energy factors are 

Qf Q Q 

cy 7 b7+Q8) 3p8 5 ) (A. 34) 

The P, -integration becomes an integral over the absorptive part of reggeon 

5, and by change of variables: cy; = -cy /CY 7 8’ Pz’ = -@#2’ P7 = -@& 9 

x = sa8p8 we can do the p8-integration. The result is: 
5-(Q i+Q 3-1) 

-(Q $+Q 3-1)-1 ’ 
S Q 5-(Q l+Q 3-1) rQ 5;Q 1Q 3 ’ 

Together with 

3-1-Q 4 

S Q 2+Q 3-1-Q *Q Q 
4 

rQ 
4’ 2 3 

(A. 35) 

(A. 36) 

for the lower three reggeon vertex we obtain for the doubleMellin transform: 

1 -(Q 4-1) 1 1 1 
Q 3+Q 4-l-Q ’ 

2 j2-tQ 4+’ 6 -1) j,-(Q 4+Q 5 -1) j,-(Q I+Q 3+Q 4-2) 

-(Q 2-Q 3) 
-rl j,-(Q 6:Q 2-Q 3) j,-(Q ,jQ 5-Q 3) j,-(Q l+QiZ_,l 3-1) (A. 37) 

which is equivalent to 

-(Q 4-f) 
r (2riJ46 j,-(Q 4+Q 5-1) j2-(Q 4+Q 6-i)) 6 (1 3+Q4 -1-Q 2)6(Q i+Q 3-f-Q5). 

(A. 38) 

As to the signature factors, we combine 5, and cQ to $ and obtain: 
1 3 5 
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lyQ Q 'Q 'Q Q 'Q 'Q 
13 5 56 6 4 

-Q 
5 

-I . 
Q ’ E 

6 5 v~+1yQ4Q6Q4+Q6-1 
6 
Q Q ’ % 

5 6 R I 

(A.39) 

(A. 40) 

With this we again arrive at (2.6) with 

l 6 Q 2-(Q 3+Q Q 5-(Q *+Q 3-1) NQ Q y 

I 2 
’ 

1’ ZNQ 4’ 6 rQ 
5;Q lQ3rQ 2 ;Q 

Q 
34 

-GQ (k2 )G 4 51 Q jj(ql-k5@Q 6((q2-k5);) * {I, :I f ‘) . (A.41) 

5 4 

Finally, we consider diagram Fig. 26. From the requirement that 

the energy of the subamplitude 3 

s(cu3+or4)(,37+,38) + s(a,+a8)(p,+p,) (A. 42) 

has to be large, we obtain again the two cases (A. 7a, b) together with 

(A. 8,9). They correspond to the reggeon diagrams in Fig. 27a, b. In 

case (a), the upper three-reggeon vertex depends only on cy 5, the lower 

one onP2. Determining the intervals for the cy , p parameters which 

appear in the reggeon energies in the same way as for the previous 
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diagram, we obtain for the upper vertex: 

-1 1-l 
S 

5 -1 1 
1’ 3 5 

and for the lower one (by symmetry arguments): 

I 
1 

( ‘bc ) 

2+1 ‘-1-P 3 4 

I -- 
-P4-1 S 

I 2+P ‘-1-l 3 4 5 4;1 2P j 

(A. 43) 

Combining all s-factors, reexpressing s in terms of s 
ab’ ‘bc and n 

and taking the double Mellin transform with respect to s 
ab’ ‘bc’ we 

obtain 
I 

0 1 2+P 5-2 1 1 1 1 
r j,-(1 2+1 3+P 5-2) j,-(1 I+P 2-1) j,-(1 2+e p3+l 5-2) j,-(1 4+1 5-1) 

(A. 45) 

which is equivalent to: 

4 -2 0 1 2+l 5 

rl 
(2ri)46 

( 
j,-(1 1+1 2-1) 6 

1 ( 
j,-(1 4+1 5-l)) 6 (p 1-(e 3+1 5-l)) 

. (j 1 4-(e 2+1 ;-I’ 
( ) 

’ (A. 46) 

The exponent of n is the sum of angular momentum, carried by the 

reggeon under the produced particle (see Fig. 22), and together with 
-I 

3 
-1 ’ 

the pfactors n , n 
3 

from the vertex of the produced particle the 

vfactors become: 
-l3 I -2 1 

0 

2+1 5 -jl -1; 1 1 2+!l 5 -2 

r 0’; 
0 

-j2 
=rl ,rl ‘{ =rJ D (A. 47) 
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The signature factors: 5, 5p gQ fQ Q p EQ p are shown to be: 
25333 3 

-Q 

35. 

-Q p lYQ ' 

E. VL + r7 
3 

' 

3,Q 2+Q 
5 

-1 

. 
Jl JZJl 

iY 6. 5. . (A. 48) 
l3’ Q 2+Q 5 -1 J2 JlJ2 

VR I 

and our expressions for F 
L,R 

become : 

l 6 
. NQ Q rQ Q Q yQ Q 

45 ii35 35 

rQ *I QaGQ 
4’2.3 1 

GQ G GQ, G GQ - VL 
2’3 3’4 5 ’ 

Q 3, Q ;, (ql-k2-k5$ (q2-k2-k5$ 

i 

'Q * 
l 1, 

3,Q 3 +Q 5 -1 
. 

VQ 
(A. 49) 

3,Q 3+Q 5-1 

The remaining case (b) leads to the same expression. 
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FIGURE CAPTIONS 

The simplest diagram for the 2+3 amplitude. 

A cut contribution to the 2+3 amplitude. 

Two-reggeon cut in the 2-2 amplitude. 

Reggeon diagram as obtained from Fig. 2. 

This diagram is obtained from Fig- 2 when the blobs 

there have a more complicated internal structure. 

(a) hybrid Feynman diagram 

(b) reggeon diagram to (a) 

(c) replacements to be made in Fig. 4 in order to reach 

Fig. 5b. 

Another diagram for the 2+3 amplitude. 

This diagram can be obtained by “enhancing” the left 

mandelstam cross in Fig. 2 through pole exchange, 

(a) hybrid Feynman diagram 

(b) Corresponding reggeon diagram 

(c) Replacement to be made in Fig. 4 in order to reach 

Fig. 7b. 

Two more complicated diagrams. 

Reggeon diagrams, obtained from Fig. 8, 

Three types of vertices which occur in the reggeon 

calculus for the production amplitude. 
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